UBORA: Euro-African Open Biomedical Engineering e-Platform for innovation through Education

EU Commission, Horizon 2020, INFRASUPP-01-2016: Policy and international cooperation measures for research infrastructures. Objectives: The project aims at creating an EU-Africa e-Infrastructure, UBORA, for open source co-design of new solutions to face the current and future healthcare challenges of both continents, by exploiting networking, knowledge on rapid prototyping of new ideas and sharing of safety criteria and performance data. The e-Infrastructure will foster advances in education and the development of innovative solutions in Biomedical Engineering (BME), both of which are flywheels for European and African economies. In collaboration with: University of Pisa, KTH, University of Tartu, Uganda Industrial Research Institute, Kenyatta University, Agile Works.

ubora

TOMAX: Tool-less manufacture of complex geometries

  • “TOMAX: Tool-less manufacture of complex geometries”, EU Commission, Horizon 2020, Factories of the Future – FoF-02-2014-2015: Manufacturing processes for complex structures and geometries with efficient use of material. Objectives: The focus of the project is to unite industrial know-how in the field of software development, photopolymers and ceramics, high performance light-sources, system integration, life cycle analysis, industrial exploitation and rewarding end-user cases. The consortium will provide 3D-printers with high throughput and outstanding materials and energy efficiency. Targeted end-use applications include ceramics for aerospace engineering, medical devices and energy efficient lighting applications. In collaboration with: TU Wien, Lithoz GmbH (see prototypes below), Syalons Ltd, Rauschert GmbH, OSRAM, Research to Market, Deskartes, Cycleco, Invision. tomax-h2020.eu

tomax1

Knowledge-based tissue scaffolds obtained by lithography based ceramic manufacture
Knowledge-based tissue scaffolds obtained by lithography based ceramic manufacture

DIAGNOCHIP: Design and development of a point-of-care rapid diagnostic system for urinary infections

  • “DIAGNOCHIP: Design and development of a point-of-care rapid diagnostic system for urinary infections”, CORFO, Government of Chile, 2014-2015. Objectives: The DIAGNOCHIP Project aims at the design and development of a point-of-care rapid diagnostic system for urinary infections, which constitutes an urgent need in remote locations without access to state-of-the-art microbiology laboratories and with prevalence of antibiotic resistances. The developed point-of-care lab-on-chip allows for rapid and visual selection of the adequate antibiotics, as the system in fact performs a rapid, cheap and sustainable antibiogram. In collaboration with: Diagnochip SpA, Hospital Universitario La Paz de Madrid, Hospital de la Ribera de Valencia, Hospital Puerta de Hierro de Madrid. diagnochip.cl

diagnochip1

Diagnochip® system and result of the rapid antibiogram.
Diagnochip® system and result of the rapid antibiogram.

i-DENT: New technologies for engineering and manufacturing personalized dental implants and surgical solutions

  • “i-DENT: New technologies for engineering and manufacturing personalized dental implants and surgical solutions”, UPM Call for Collaborative Projects with Latin America, 2014-2015. Objectives: The i-DENT Project is aimed at validating the employment of new CAD-CAE-CAM approaches for the development of personalized solutions in dentistry, including dental implants and splint for guided surgery.
Biomimetic dental implants with porous structure for improved integration.
Biomimetic dental implants with porous structure for improved integration.

Development of a prototype for intra-ocular pressure regulation in glaucoma

  • “Development of a prototype for intra-ocular pressure regulation in glaucoma”, National Programme for the Promotion of Scientific-Technological Development and Innovation, Government of Perú, 2013-2014. Objectives: The Glauco-valve Project aims at the development of a prototype for intra-ocular pressure regulation in glaucoma. The glaucoma valve is designed with the support of FEM simulation resources, based on special texturing procedures and manufactured with the help of additive manufacturing resources. In collaboration with: University of Piura.

glauco1

Rapid prototyped glaucoma valve obtained in medical PDMS
Rapid prototyped glaucoma valve obtained in medical PDMS

FEMAB: Instrumented splint for the diagnosis and management of bruxism

  • “FEMAB: Instrumented splint for the diagnosis and management of bruxism”, Promotion of Tech. Innovation, Ministry of Science and Education. Objectives: The FEMAB project aims at the development of an instrumented splint for the diagnosis and management of bruxism. The system stands out for being developed using polymeric piezoelectric sensors and for the possibility of detecting different types of bruxism and of carrying out quantitative assessments.

femad1

Femab system for the diagnosis of bruxism.
Femab system for the diagnosis of bruxism.