Surface design and functionalization of materials and products

Material (and device) surface topography has a direct influence on several relevant properties, linked to its final performance, such as friction coefficient, wear resistance, self-cleaning ability, biocompatibility, optical response and properties, touch perception, overall aesthetic aspect and even flavor. Therefore it also plays a determinant role in material selection in engineering design, especially in the field of micro- and nano-system development, in which the effects of topography on the incorporation of advanced properties are even more remarkable. The possibility of manufacturing textured materials and devices, with surface properties controlled from the design stage, instead of being the result of machining processes or chemical attacks, is a key factor for the incorporation of advanced functionalities to a wide set of micro and nanosystems. In our lab, high-precision additive manufacturing technologies based on photo-polymerization, together with the use of fractal and math-based models linked to computer-aided design tools, allow us to precisely define and control of final surface properties. In this fascinating field of research and development, we usually dedicate our efforts to the following topics:

  • Design of bioinspired surfaces based on math-based approaches.
  • Control of surface topography and micro-texture from the design stage.
  • Design and development of hydrophobic / hydrophilic patterns for enhanced tribology.
  • Incorporation of desired surface properties to final applications.
  • Improved ergonomics, aesthetics, optical properties and contact phenomena.
Examples of bioinspired surface designs and probes with design-controlled surface features.
Examples of bioinspired surface designs and probes with design-controlled surface features.