Knowledge-based design of multifunctional / advanced materials

Numerous active, multipurpose or “smart” materials have appeared in recent decades, all capable of responding in a controllable way to different external physical and chemical stimuli by changing some of their properties. These materials can be used to design sensors, actuators and multipurpose systems. In addition, special “metamaterials” are designed to obtain desired properties by means of adequately defining and controlling their microstructure. All these materials can be considered “knowledge-based”(for the special design requirements involved in their selection and application) and “multifunctional” (for their unique properties connecting different domains of Physics and Chemistry) materials. Since 2012 we actively collaborate with the “European Virtual Institute on Knowledge-Based Multifunctional Materials” (KMM-VIN) (http://kmmvin.eu), especially in tasks linked to materials modelling and to biomedical applications of innovative biomaterials, having hosted its 5th Industrial Workshop on “Multi-scale and multi-physics materials modelling for advanced industries”.
http://kmmvin.eu/system/files/u279/kboch/Uloaded/KMM-VIN_Workshop_Madrid_2016_Booklet.pdf

Among the activities we perform linked to knowledge-based multifunctional & advanced materials, mainly focused to smart materials and mechanical metamaterials, we highlight:
– Knowledge-based design of smart materials & metamaterials.
– Characterization, modelling and simulation of smart materials & metamaterials.
– Industrial applications of smart materials & metamaterials.
– Manufacture of smart materials & metamaterials and of applications based on them.

Examples of smart materials and metamaterials: Design, models, prototypes, applications. SEM images of prototypes obtained in collaboration with KNMF-KIT.
Examples of smart materials and metamaterials: Design, models, prototypes, applications.
SEM images of prototypes obtained in collaboration with KNMF-KIT.