Tecnologías Habilitadoras para la Implementación de la Inteligencia Artificial en la cadena de valor de la Fabricación Aditiva de nuevas aleaciones metálicas
DESCRIPCIÓN DEL PROYECTO Y OBJETIVOS
El proyecto METALIA (“Tecnologías Habilitadoras para la Implementación de la Inteligencia Artificial en la cadena de valor de la Fabricación Aditiva de nuevas aleaciones metálicas”) tiene como objetivo general fortalecer las capacidades del tejido industrial español mediante la implementación de herramientas de inteligencia artificial (IA), para la optimización de la cadena de valor de la fabricación aditiva (FA) de nuevos materiales metálicos: diseño, fabricación, post-procesos y análisis del ciclo de vida; así como la validación de las herramientas de IA desarrolladas en prototipos de diferentes sectores industriales, principalmente en aplicaciones de biotecnología industrial, sector aeronáutico, espacio, industrial, entre otros, aumentando las posibilidades de industrialización de la fabricación aditiva gracias al control automatizado de la calidad, mejora de la productividad, y la ampliación de materiales utilizables por la tecnología, contribuyendo a impulsar la competitividad de la industria española.
Además, el proyecto de la iniciativa TransMisiones 2023, de 4 años de duración, tiene como objetivo la colaboración eficaz entre las empresas que forman la agrupación CDTI con los centros de investigación de la agrupación AEI, favoreciendo un entorno que propicie la generación de resultados científicos hacia niveles avanzados de madurez tecnológica gracias a una correcta transferencia entre la investigación científica y el desarrollo tecnológico.
CONSORCIO CDTI
Egile Mechanics
Grupo Sevilla Control (GSC)
Cubicoff Ingeniería abierta
Dlyte
Bitmetrics
CONSORCIO AEI
FADA-CATEC
UPM
LEITAT
IMDEA Materiales
FINANCIACIÓN
PLEC2023-010237 (AEI); MIG-20232050 (CDTI)
El proyecto pertenece a la convocatoria del programa “misiones de ciencia e innovación” en el marco de la iniciativa Transmisiones del año 2023,acción que se ejecuta en colaboración entre el CDTI y la Agencia Estatal de Investigación (AEI) por la que se coordina la financiación a agrupaciones de organismos de investigación y de difusión de conocimiento y agrupaciones de empresas que colaboran para el desarrollo conjunto de una actuación coordinada de I+D, que dé respuesta a los desafíos identificados en las prioridades temáticas (Misiones), definidas en la convocatoria. Proyecto financiado por el Ministerio de Ciencia, Innovación y Universidades, la Agencia Estatal de Investigación y el Centro para el Desarrollo Tecnológico y la Innovación E.P.E. (CDTI).
“iMPLANTS-CM: Impresión de metamateriales empleando aleaciones con memoria y gradientes funcionales para una nueva generación de implantes inteligentes”
Proyecto Sinérgico de la Comunidad Autónoma de Madrid (Ref. Y2020/BIO-6756)
IP: Andrés Díaz Lantada, Dpto. Ingeniería Mecánica, Universidad Politécnica de Madrid
Co-IP: Jon Mikel Molina Aldareguia, Instituto IMDEA Materiales
Financiación: Dirección General de Investigación e Innovación Tecnológica, Consejería de Ciencia, Universidades e Investigación, Comunidad Autónoma de Madrid, Proyectos Sinérgicos de I+D en Nuevas y Emergentes Áreas Científicas en la Frontera de la Ciencia y de Naturaleza Interdisciplinar (Orden 93/2020 de 22 de junio).
Socios: Instituto IMDEA Materiales y Universidad Politécnica de Madrid (entidad coordinadora del proyecto).
Introducción
Investigadores del Departamento de Ingeniería Mecánica de la ETSI Industriales de la Universidad Politécnica de Madrid y del Instituto IMDEA Materiales investigan juntos en el proyecto “iMPLANTS-CM: impresión de metamateriales empleando aleaciones con memoria de forma y gradientes funcionales para una nueva generación de implantes inteligentes”. El proyecto está financiado por la Comunidad Autónoma de Madrid, a través de su convocatoria 2020 de “ayudas para la realización de proyectos sinérgicos de I+D en nuevas y emergentes áreas científicas en la frontera de la ciencia y de naturaleza interdisciplinar” recientemente resuelta. Se trata de una convocatoria altamente competitiva (18 proyectos elegidos entre unas 200 propuestas), inspirada en el modelo “Synergy Grant” del “European Research Council”.
iMPLANTS-CM persigue el diseño y la fabricación personalizada de implantes activos, capaces de modificar su geometría de forma controlada, para potenciar cirugías de mínima invasión y posibilitar evoluciones geométricas, que acompañen a los procesos de curación y crecimiento de los pacientes. Utilizará para ello tecnologías de impresión 3D y 4D, junto a materiales innovadores, en especial aleaciones “inteligentes” de Ni-Ti, así como geometrías especiales que potencien sus capacidades metamórficas. Entre las aplicaciones a desarrollar cabe citar: stents para tratamiento de aneurismas en bifurcaciones arteriales, estructuras para válvulas cardiacas y anillos de anuloplastia, implantables de forma mínimamente invasiva, y microbots para intervenciones controladas de forma remota en el interior del organismo humano.
Desafíos e hipótesis de partida
Las tecnologías de fabricación aditiva, ahora populares bajo la denominación de “impresión 3D”, han reinventado muchos aspectos del desarrollo de productos en las últimas décadas. Aspectos como: la obtención de geometrías complejas y la consiguiente libertad geométrica a la hora de diseñar, que posibilitan la creación de objetos con características especiales; la eliminación de costosas herramientas productivas, con lo que se promueve la personalización; o la integración de funcionalidades que, a través de la citada complejidad geométrica, permiten reducir el número de componentes y operaciones implicados en la materialización de todo tipo de sistemas de ingeniería, son ahora realidades gracias al empleo de la fabricación aditiva. En el ámbito médico, las tecnologías de fabricación aditiva han permitido también mejorar numerosas actuaciones sobre los pacientes y promover la personalización en los tratamientos: la fabricación en base a imágenes médicas de los pacientes de modelos para entrenamiento y planificación quirúrgica, de guías de apoyo a la cirugía e incluso de implantes para reconstrucciones óseas, son ahora tendencia en la práctica médica, si bien su empleo no es aún generalizado.
Sin embargo, muchas de estas propuestas de aplicación de las tecnologías aditivas al campo de la salud, especialmente en el caso del desarrollo de implantes, son estáticas y no permiten una colaboración dinámica con los tejidos de los pacientes, que posibilite cirugías mínimamente invasivas o permitan una adaptación geométrica conforme a los procesos de curación o crecimiento de los pacientes. El empleo de implantes “inteligentes”, capaces de sufrir progresivas metamorfosis conforme a los procesos quirúrgicos, de integración biológica, de curación y de crecimiento, y que además se diseñen de forma personalizada y se fabriquen de forma aditiva, aprovechando todo el potencial de estas tecnologías, es aún un sueño.
Existen ciertos conceptos de dispositivos médicos “inteligentes”, fabricados de forma aditiva y que aprovechan las posibilidades de la denominada “impresión 4D”, para conseguir una deseable respuesta dinámica. Pero la gran mayoría de dichos conceptos se basan en el empleo de tecnologías aditivas de fotopolimerización, de deposición de filamentos termoplásticos fundidos o en la bioimpresión de hidrogeles. Por tanto, no resultan soluciones adecuadas, ni desde el punto de vista biomecánico, por la limitada capacidad de carga de muchos de los polímeros o hidrogeles utilizados; ni biológico, por la toxicidad de acrilatos y epoxis empleados en las tecnologías de fotopolimerización aditiva. En la actualidad, los implantes inteligentes más relevantes se siguen fabricando aleaciones de la familia del nitinol (Ni-Ti en distintas proporciones y con diferentes microaleantes) que destacan por sus propiedades de memoria de forma y superelasticidad. Sin embargo, los procesos de síntesis, fabricación y procesado son costosos y no permiten la personalización de los dispositivos, por lo que las aplicaciones siguen en esencia limitadas a los tradicionales “stents” vasculares y a ciertos útiles quirúrgicos, como los catéteres activos.
Nuestra hipótesis de partida es que, a través de una investigación sistemática y multidisciplinar, será posible fabricar de forma aditiva, combinando metamateriales, aleaciones con memoria y gradientes de composición, lo que reformulará el concepto de impresión 4D y posibilitará el desarrollo de una nueva generación de implantes personalizados e inteligentes, con capacidades metamórficas muy superiores a las actualmente disponibles.
Prototipos conceptuales de estructuras valvulares obtenidos mediante tecnología aditiva.
Objetivos del proyecto
El proyecto iMPLANTS-CM presenta los siguientes objetivos principales:
OBJ.1. Investigar el ámbito de los metamateriales biomecánicos, idear y diseñar una colección singular de retículas o celdas unitarias, a modo de bloques constructivos, como posibilitadoras de nuevos principios de cambio de forma en impresión 4D.
OBJ.2. Desarrollar la fabricación aditiva de aleaciones con memoria de forma y gradientes funcionales e investigar su procesamiento guiado por modelos computacionales multi(físicos-químicos) y multiescala, para obtener estructuras con múltiples zonas activas.
OBJ.3. Integrar sinérgicamente los diseños de metamateriales y las aleaciones con propiedades de memoria de forma y superelasticidad para obtener piezas metálicas biocompatibles únicas capaces de experimentar múltiples metamorfosis controladas.
OBJ.4. Aplicar las investigaciones y desarrollos citados a la obtención de biometamateriales o bioestructuras activas en materiales de altas prestaciones y con capacidades metamórficas, como fundamento para futuras aplicaciones médicas.
OBJ.5. Desarrollar y validar una metodología para el diseño personalizado de implantes inteligentes y su producción personalizada en un único paso, como alternativa a los procesos actuales de fabricación de implantes de nitinol y otras aleaciones.
OBJ.6. Concebir, diseñar y validar, mediante prototipos funcionales y experimentos in vitro, una nueva generación de implantes inteligentes basados en los materiales, geometrías y procesos investigados.
OBJ.7. Establecer una alianza a largo plazo entre la Universidad Politécnica de Madrid y el Instituto IMDEA Materiales, en el ámbito de la fabricación aditiva biomédica, liderada por dos investigadores jóvenes con proyección destacable y con experiencias y conocimientos complementarios.
Esquema del proyecto iMPLANTS-CM: Situación científico-tecnológica actual, sinergias entre entidades solicitantes, avances y transformaciones fruto del proyecto.
EU Commission, Horizon 2020, INFRASUPP-01-2016: Policy and international cooperation measures for research infrastructures. Objectives: The project aims at creating an EU-Africa e-Infrastructure, UBORA, for open source co-design of new solutions to face the current and future healthcare challenges of both continents, by exploiting networking, knowledge on rapid prototyping of new ideas and sharing of safety criteria and performance data. The e-Infrastructure will foster advances in education and the development of innovative solutions in Biomedical Engineering (BME), both of which are flywheels for European and African economies. In collaboration with: University of Pisa, KTH, University of Tartu, Uganda Industrial Research Institute, Kenyatta University, Agile Works.
“TOMAX: Tool-less manufacture of complex geometries”, EU Commission, Horizon 2020, Factories of the Future – FoF-02-2014-2015: Manufacturing processes for complex structures and geometries with efficient use of material. Objectives: The focus of the project is to unite industrial know-how in the field of software development, photopolymers and ceramics, high performance light-sources, system integration, life cycle analysis, industrial exploitation and rewarding end-user cases. The consortium will provide 3D-printers with high throughput and outstanding materials and energy efficiency. Targeted end-use applications include ceramics for aerospace engineering, medical devices and energy efficient lighting applications. In collaboration with: TU Wien, Lithoz GmbH (see prototypes below), Syalons Ltd, Rauschert GmbH, OSRAM, Research to Market, Deskartes, Cycleco, Invision. tomax-h2020.eu
Knowledge-based tissue scaffolds obtained by lithography based ceramic manufacture
“DIAGNOCHIP: Design and development of a point-of-care rapid diagnostic system for urinary infections”, CORFO, Government of Chile, 2014-2015. Objectives: The DIAGNOCHIP Project aims at the design and development of a point-of-care rapid diagnostic system for urinary infections, which constitutes an urgent need in remote locations without access to state-of-the-art microbiology laboratories and with prevalence of antibiotic resistances. The developed point-of-care lab-on-chip allows for rapid and visual selection of the adequate antibiotics, as the system in fact performs a rapid, cheap and sustainable antibiogram. In collaboration with: Diagnochip SpA, Hospital Universitario La Paz de Madrid, Hospital de la Ribera de Valencia, Hospital Puerta de Hierro de Madrid. diagnochip.cl
Diagnochip® system and result of the rapid antibiogram.
“i-DENT: New technologies for engineering and manufacturing personalized dental implants and surgical solutions”, UPM Call for Collaborative Projects with Latin America, 2014-2015. Objectives: The i-DENT Project is aimed at validating the employment of new CAD-CAE-CAM approaches for the development of personalized solutions in dentistry, including dental implants and splint for guided surgery.
Biomimetic dental implants with porous structure for improved integration.
“Development of a prototype for intra-ocular pressure regulation in glaucoma”, National Programme for the Promotion of Scientific-Technological Development and Innovation, Government of Perú, 2013-2014. Objectives: The Glauco-valve Project aims at the development of a prototype for intra-ocular pressure regulation in glaucoma. The glaucoma valve is designed with the support of FEM simulation resources, based on special texturing procedures and manufactured with the help of additive manufacturing resources. In collaboration with: University of Piura.
Rapid prototyped glaucoma valve obtained in medical PDMS
“FEMAB: Instrumented splint for the diagnosis and management of bruxism”, Promotion of Tech. Innovation, Ministry of Science and Education. Objectives: The FEMAB project aims at the development of an instrumented splint for the diagnosis and management of bruxism. The system stands out for being developed using polymeric piezoelectric sensors and for the possibility of detecting different types of bruxism and of carrying out quantitative assessments.